Step 1: Settling velocity by Stokes law.
\[
v = \frac{g d^2 (\rho_p - \rho_f)}{18 \mu}
\]
where $d$ = particle diameter, $\rho_p$ = particle density, $\rho_f$ = fluid density.
Step 2: Equating velocities for equal settling.
\[
d_1^2 (\rho_{p1} - \rho_f) = d_2^2 (\rho_{p2} - \rho_f)
\]
Step 3: Substitution of values.
For quartz: $d_1 = 25 \, μm$, $\rho_{p1} = 2600$, $\rho_f = 1000$.
\[
\Delta \rho_1 = 2600 - 1000 = 1600
\]
For galena: $\rho_{p2} = 7400$, $\Delta \rho_2 = 7400 - 1000 = 6400$
Step 4: Calculate diameter of galena particle.
\[
d_2^2 = d_1^2 \times \frac{\Delta \rho_1}{\Delta \rho_2}
\]
\[
d_2^2 = (25)^2 \times \frac{1600}{6400} = 625 \times 0.25 = 156.25
\]
\[
d_2 = \sqrt{156.25} = 12.5 \, μm
\]
Rechecking carefully: If $\Delta \rho_1 = 1600$, $\Delta \rho_2 = 6400$: ratio = 0.25.
So $d_2 = 25 \times \sqrt{0.25} = 25 \times 0.5 = 12.5 μm$.
Final Answer:
\[
\boxed{12.5 \, μm}
\]