Step 1: The velocity in simple harmonic motion is expressed as: \[ v = \omega \sqrt{A^2 - x^2} \] where \( A = 10 \) cm, \( x = 6 \) cm, and \( \omega = \frac{2\pi}{T} = \pi \) rad/s.
Step 2: Substituting the given values: \[ v = \pi \sqrt{(10)^2 - (6)^2} = \pi \sqrt{100 - 36} = \pi \sqrt{64} = 8\pi. \] \bigskip
Distinguish between an ammeter and a voltmeter. (Two points each).
The displacement of a particle performing simple harmonic motion is \( \frac{1}{3} \) of its amplitude. What fraction of total energy is its kinetic energy?
Obtain the differential equation of linear simple harmonic motion.
The slope of the tangent to the curve \( x = \sin\theta \) and \( y = \cos 2\theta \) at \( \theta = \frac{\pi}{6} \) is ___________.
Solve the following L.P.P. by graphical method:
Maximize:
\[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]