In simple harmonic motion, the kinetic energy at a displacement \(x\) is given by:
\[
KE = \frac{1}{2} m \omega^2 \left(A^2 - x^2\right),
\]
where \(A\) is the amplitude, \(x\) is the displacement, and \(\omega\) is the angular frequency. For the displacement \(x = \frac{A}{4}\) and \(x = \frac{A}{2}\), the kinetic energies are:
\[
KE_1 = \frac{1}{2} m \omega^2 \left(A^2 - \left(\frac{A}{4}\right)^2\right),
\]
\[
KE_2 = \frac{1}{2} m \omega^2 \left(A^2 - \left(\frac{A}{2}\right)^2\right).
\]
The ratio of the kinetic energies is:
\[
\frac{KE_1}{KE_2} = \frac{A^2 - \left(\frac{A}{4}\right)^2}{A^2 - \left(\frac{A}{2}\right)^2} = \frac{4}{1}.
\]