Question:

The vector with terminal point A (2, -3, 5) and initial point B (3, -4, 7) is:

Show Hint

To find a vector between two points, subtract the coordinates of the initial point from the terminal point.
Updated On: Feb 27, 2025
  • \( \hat{i} - \hat{j} + 2\hat{k} \)
  • \( \hat{i} + \hat{j} + 2\hat{k} \)
  • \( -\hat{i} - \hat{j} - 2\hat{k} \)
  • \( -\hat{i} + \hat{j} - 2\hat{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Apply the vector formula. \[ \vec{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k} \] Substituting values \( A(2, -3, 5) \) and \( B(3, -4, 7) \): \[ \vec{AB} = (2 - 3)\hat{i} + (-3 + 4)\hat{j} + (5 - 7)\hat{k} \] Step 2: Simplify the components. \[ \vec{AB} = -\hat{i} - \hat{j} - 2\hat{k} \] Final Answer: \[ \boxed{-\hat{i} - \hat{j} - 2\hat{k}} \]
Was this answer helpful?
0
1

Top Questions on Vectors

View More Questions