To find the vector projection of b onto a:
proj(a, b) = \(\frac {b\ dot \ a}{|a|^2}\) x a
Given a = 3\(\hat {i}\) + 2\(\hat {j}\) + 5\(\hat {k}\) and b = 7\(\hat {i}\) - 5\(\hat {i}\) - \(\hat {k}\)
We can calculate the vector projection.First, let's find the dot product of b and a:
b dot a = (7 x 3) + (-5 x 2) + (-1 x 5) = 21 - 10 - 5 = 6.
Now calculate the magnitude of a:
|a| = \(\sqrt{(3^2) + (2^2) + (5^2)}\)= \(\sqrt{9 + 4 + 25}\) = \(\sqrt{38}\)
Now we can substitute these values into the formula to find the vector projection:
proj(a, b) = \(\frac {b \ dot\ a }{|a|^2}\) x a
proj(a, b) = \(\frac {6}{(\sqrt{(38)^2}}\) x (3\(\hat i\) + 2\(\hat j\) + 5\(\hat k\))
proj(a, b) = \(\frac {6}{38}\) x (3\(\hat {i}\) + 2\(\hat {j}\) + 5\(\hat k\))
proj(a, b) = \(\frac {3}{19}\) x (3\(\hat {i}\) + 2\(\hat {j}\) + 5\(\hat k\))
proj(a, b) = \(\frac {9}{19}\)\(\hat {i}\) + \(\frac {6}{19}\)\(\hat {j}\) + \(\frac {15}{19}\)\(\hat {k}\)
Therefore, the vector projection of b onto a is \(\frac {9\hat i + 6\hat j + 15\hat k}{19}\).
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |