∑i=110xi=50,∴mean=5
Variance=54=10∑xi2−(10∑xi)2
54=10∑xi2−25
⇒∑xi2=258....(1)
Now ∑i=110(xi−β)2=98
∑i=110(xi2−2βxi+β2)=98
258−2β(50)+10β2=98
(β−8)(β−2)=0
β=8 or β=2 (as β>2)
∴β=8....(2)
Now as per the question
2(x1−1)+4β,2(x2−1)+4β,...,2(x10−1)+4β
can be simplified to
2x1+30,2x2+30,...,2x10+30
using eq. (2)
μ=2(5)+30=40.....(3)
σ2=22(54)=516
∴σ2βμ=5168×40=100