Question:

Let x1,x2,,x10 x_1, x_2, \dots, x_{10} be ten observations such that i=110(xi2)=30,i=110(xiβ)2=98,β2, \sum_{i=1}^{10} (x_i - 2) = 30, \quad \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \quad \beta \geq 2, and their variance is 45 \frac{4}{5} . If μ \mu and σ2 \sigma^2 are respectively the mean and the variance of 2(x11)+4B,2(x21)+4B,,2(x101)+4B, 2(x_1 - 1) + 4B, 2(x_2 - 1) + 4B, \dots, 2(x_{10} - 1) + 4B, then Bμσ2 B\mu \sigma^2 is equal to:

Show Hint

Use the properties of variance and mean under linear transformations to solve problems involving such transformations.
Updated On: Mar 24, 2025
  • 90
  • 110
  • 100
  • 120
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

i=110xi=50,mean=5 \sum_{i=1}^{10} x_i = 50, \therefore \text{mean} = 5

Variance=45=xi210(xi10)2 \text{Variance} = \frac{4}{5} = \frac{\sum x_i^2}{10} - \left(\frac{\sum x_i}{10}\right)^2

45=xi21025 \frac{4}{5} = \frac{\sum x_i^2}{10} - 25

xi2=258....(1) \Rightarrow \sum x_i^2 = 258 \quad ....(1)

Now i=110(xiβ)2=98 \text{Now } \sum_{i=1}^{10} (x_i - \beta)^2 = 98

i=110(xi22βxi+β2)=98 \sum_{i=1}^{10} (x_i^2 - 2\beta x_i + \beta^2) = 98

2582β(50)+10β2=98 258 - 2\beta(50) + 10\beta^2 = 98

(β8)(β2)=0 (\beta - 8)(\beta - 2) = 0

β=8 or β=2 (as β>2) \beta = 8 \text{ or } \beta = 2 \text{ (as } \beta > 2)

β=8....(2) \therefore \beta = 8 \quad ....(2)

Now as per the question

2(x11)+4β,2(x21)+4β,...,2(x101)+4β 2(x_1 - 1) + 4\beta, 2(x_2 - 1) + 4\beta, ..., 2(x_{10} - 1) + 4\beta

can be simplified to

2x1+30,2x2+30,...,2x10+30 2x_1 + 30, 2x_2 + 30, ..., 2x_{10} + 30

using eq. (2)

μ=2(5)+30=40.....(3) \mu = 2(5) + 30 = 40 \quad .....(3)

σ2=22(45)=165 \sigma^2 = 2^2\left(\frac{4}{5}\right) = \frac{16}{5}

βμσ2=8×40165=100 \therefore \frac{\beta\mu}{\sigma^2} = \frac{8 \times 40}{\frac{16}{5}} = 100

Was this answer helpful?
0
0

Top Questions on Mean and Variance of Random variables

View More Questions