Let
\[
I = \int_{\log_2}^{-\log_2} e^x \left( \log \left( e^x + \sqrt{1 + e^{2x}} \right) \right) dx
\]
Substitute \( e^x = t \), so that \( e^x dx = dt \). The limits also change accordingly:
When \( x = \log_2 \), \( t = 2 \); and when \( x = -\log_2 \), \( t = 1/2 \).
Now, apply integration by parts:
\[
I = \left[ \ln \left( t + \sqrt{t^2 + 1} \right) \right]_{\frac{1}{2}}^{2}
\]
This yields the result
\[
\Rightarrow \log \left( \frac{2 + \sqrt{5}}{\sqrt{5}} \right) / 2
\]