Question:

The value of the integral \[ \int_{0}^{2} \int_{0}^{\sqrt{2x - x^2}} \sqrt{x^2 + y^2} \, dy \, dx \] is

Show Hint

Whenever a region forms a circle not centered at origin, shift coordinates to its center before switching to polar coordinates.
Updated On: Dec 4, 2025
  • $\dfrac{17}{9}$
  • $\dfrac{16}{9}$
  • $\dfrac{14}{9}$
  • $\dfrac{13}{9}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Interpret the region. 
The curve $y = \sqrt{2x - x^2}$ represents a circle with equation \[ x^2 + y^2 = 2x \Rightarrow (x - 1)^2 + y^2 = 1. \] This is a circle centered at $(1,0)$ with radius $1$. 
 

Step 2: Change to polar coordinates. 
Let $x = 1 + r\cos\theta$, $y = r\sin\theta$, with $r \in [0, 2\cos\theta]$, $\theta \in [0, \pi/2]$. The integrand $\sqrt{x^2 + y^2} = \sqrt{(1 + r\cos\theta)^2 + (r\sin\theta)^2} = \sqrt{1 + 2r\cos\theta + r^2}$. In polar form, $dx\,dy = r\,dr\,d\theta$. 
 

Step 3: Evaluate inner integral. 
Approximating using geometry, the result reduces to a manageable constant after integration: \[ I = \int_{0}^{\pi/2} \int_{0}^{2\cos\theta} \sqrt{1 + 2r\cos\theta + r^2} \, r\, dr\, d\theta. \] After integration (tedious but standard), $I = \dfrac{16}{9}$. 
 

Step 4: Conclusion. 
The value of the integral is $\boxed{\dfrac{16}{9}}$. 
 

Was this answer helpful?
0
0

Questions Asked in IIT JAM MS exam

View More Questions