Step 1: Change the order of integration.
Region: $0 \le y \le 1$, $y^2 \le x \le 1$.
Equivalent: $0 \le x \le 1$, $0 \le y \le \sqrt{x}$.
Step 2: Integrate with respect to $y$ first.
\[
I = \int_0^1 \frac{e^x}{\sqrt{x}} \left[\int_0^{\sqrt{x}} dy \right] dx = \int_0^1 \frac{e^x}{\sqrt{x}} \cdot \sqrt{x} \, dx = \int_0^1 e^x \, dx.
\]
Step 3: Integrate over $x$.
\[
I = e^x \Big|_0^1 = e - 1 \approx 2.718 - 1 = 1.718.
\]
Wait, recheck range: actual inner integral yields factor $(\sqrt{x} - 0)$ — correct. So,
\[
I = e - 1 = 1.72.
\]
Step 4: Rounding to two decimal places.
\[
\boxed{1.72.}
\]