Question:

The value of the integral $ \int_{-2}^{0}\frac{dx}{\sqrt{12-x^{2}-4x}} $ is

Updated On: Jun 14, 2022
  • $ \frac{\pi}{2} $
  • $ \frac{\pi}{6} $
  • $ \frac{\pi}{3} $
  • $ -\frac{\pi}{6} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Let $I = \int\limits _{-2}^{0} \frac{dx}{\sqrt{12 - x^2 - 4x}}$
$ = \int\limits_{-2}^{0} \frac{dx}{\sqrt{12 - (x^2 + 4x + 4) + 4}}$
$= \int\limits_{-2}^{0} \frac{dx}{\sqrt{16 - (x + 2)^2}}$
$ = \int\limits_{-2}^{0}\frac{dx}{\sqrt{4^2 - (x+2)^2}}$
$\left[sin^{-1}\left(\frac{x+2}{4}\right)\right]_{-2}^{0} $
$= sin^{-1}\left(\frac{0+2}{4}\right) - sin^{-1}\left(\frac{-2+2}{4}\right) $
$= sin^{-1}\left(\frac{1}{2}\right)- sin^{-1}\left(0\right)$
$= \frac{\pi}{6} - 0$
$ = \frac{\pi}{6}$
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.