Question:

The value of the integral $\displaystyle \int_0^1$ $\frac{x^{3}}{1+x^{8}} dx$ is equal to

Updated On: Jun 7, 2024
  • $\frac{\pi}{8}$
  • $\frac{\pi}{4}$
  • $\frac{\pi}{16}$
  • $\frac{\pi}{6}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let $I=\displaystyle\int_{0}^{1} \frac{x^{3}}{1+x^{8}} d x$
Put $x^{4}=t $
$ \Rightarrow 4 x^{3}\, d x=d t$
$\therefore I=\displaystyle \int_{0}^{1} \frac{1}{1+t^{2}} \cdot \frac{1}{4} d t=\frac{1}{4}\left[\tan ^{-1} t\right]_{0}^{1}$
$=\frac{1}{4}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]=\frac{1}{4}\left[\frac{\pi}{4}-0\right]=\frac{\pi}{16}$
Was this answer helpful?
0
0