>
Exams
>
Mathematics
>
Some Properties of Definite Integrals
>
the value of the integral 0 x x x x dx is equal to
Question:
The value of the integral
$\int^{\pi}_0 \frac{x \tan \, x}{\sec \, x + \tan \, x} dx $
is equal to
UPSEE - 2018
UPSEE
Updated On:
Jun 20, 2022
$\pi \left( \frac{\pi}{2} - 1 \right) $
$\frac{\pi}{2} \left( \pi - 1 \right) $
$\pi ( \pi - 1) $
$\frac{\pi}{2} \left( \pi + 1 \right) $
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Let
$I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
$I=\int_{0}^{\pi} \frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x)+\tan (\pi-x)} d x$
$\left[\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]$
$I=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\tan x} d x$
$\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\tan x}{\sec x+\tan x} d x$
$\Rightarrow 2I =\pi \int_{0}^{\pi} \tan x(\sec x-\tan x) d x$
$\Rightarrow 2 I =\pi \int_{0}^{\pi}\left(\sec x \tan x-\tan ^{2} x\right) d x$
$\Rightarrow 2 I=\pi \int_{0}^{\pi}\left(\sec x \tan x-\sec ^{2} x+1\right) d x$
$\Rightarrow 2I =\pi[\sec x-\tan x+x]_{0}^{\pi}$
$\Rightarrow I =\pi[(\sec \pi-\tan \pi+\pi)-(\sec 0-\tan 0+0)]$
$\Rightarrow I=\pi\left[\frac{\pi}{2}-1\right]$
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Some Properties of Definite Integrals
If \( f(t) = \int_0^{\pi} \frac{2x \, dx}{1 - \cos^2 t \sin^2 x} \), \( 0 < t < \pi \), then the value of \[ \int_0^{\frac{\pi}{2}} \frac{\pi^2 \, dt}{f(t)} \] equals _____.
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
The value of $k \in \mathbb{N}$ for which the integral \[ I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N}, \] satisfies $147 \, I_{20} = 148 \, I_{21}$ is:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
\[ \lim_{x \to \frac{\pi}{2}} \frac{\int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left( \sin\left(2t^{1/3}\right) + \cos\left(t^{1/3}\right) \right) \, dt}{\left( x - \frac{\pi}{2} \right)^2} \] is equal to:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
Let \( f(x) = \int_0^x g(t) \log_e \left( \frac{1 - t}{1 + t} \right) dt \), where \( g \) is a continuous odd function. If \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left( \frac{\pi}{\alpha} \right)^2 - \alpha, \] then \( \alpha \) is equal to .....
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
The value of $12 \int\limits_0^3\left|x^2-3 x+2\right| d x$ is
JEE Main - 2023
Mathematics
Some Properties of Definite Integrals
View Solution
View More Questions
Questions Asked in UPSEE exam
A carnot engine takes 300 calories of heat at 500 K and rejects 150 calories of heat to the sink. The temperature of the sink is
UPSEE - 2019
Heat Transfer
View Solution
Which of the following is not permissible arrangement of electrons in an atom.
UPSEE - 2019
Quantum Mechanical Model of Atom
View Solution
If det
$\begin{bmatrix}1&1&2\\ 2&4&9\\ t&t^{2}&1+t^{3}\end{bmatrix} = 0 $
, then the values of t are
UPSEE - 2019
Properties of Determinants
View Solution
The imaginary part of
$\left( \frac{1}{2} + \frac{1}{2}i\right)^{10} $
is
UPSEE - 2019
Complex Numbers and Quadratic Equations
View Solution
Let S be the set of all right angled triangles with integer sides forming consecutive terms of an arithmetic progression. The number of triangles in S with perimeter less than 30 is
UPSEE - 2019
Arithmetic Progression
View Solution
View More Questions