Question:

The value of the integral $ \int_{0}^{1} $ $ \frac{e^{5log_{e}x}-e^{4log_{e}x}}{e^{log_{e}x^3}-e^{log_{e}x^2}}dx $ is

Updated On: Jun 14, 2022
  • $ \frac{1}{3} $
  • $ 1 $
  • $ -\frac{1}{3} $
  • $ -1 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $I =\int\limits_{0}^{1} \frac{e^{5 log_{e} x} -e^{4 log_{e} x}}{e^{log_{e} x^3}-e^{log_{e}x^2}} dx $
$ = \int\limits_{0}^{1} \frac{e^{log_{e}^5}-e^{log_{e} x^4}}{e^{log_{e} x^3}-e^{log_{e} x^2}} dx $
$ = \int\limits_{0}^{1} \frac{x^{5}-x^{4}}{x^{3}-x^{2}} dx \left[\because e^{log_{e} x} = X\right]$
$ = \int\limits_{0}^{1} \frac{x^{4}\left(x-1\right)}{x^{2}\left(x-1\right)}dx$
$ = \int\limits_{0}^{1} x^{2} dx$
$ = \left[\frac{x^{3}}{3}\right]_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3}$
$ \Rightarrow I = \frac{1}{3}$
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.