Concept: This problem can be solved in two ways:
1. By substituting the known trigonometric values for \(45^\circ\).
2. By using the Pythagorean trigonometric identity \(1 + \tan^2\theta = \sec^2\theta\).
Method 1: Substituting trigonometric values
Step 1: Recall the values of \(\sec 45^\circ\) and \(\tan 45^\circ\)
We know \(\cos 45^\circ = \frac{1}{\sqrt{2}}\).
Since \(\sec \theta = \frac{1}{\cos \theta}\), then \(\sec 45^\circ = \frac{1}{1/\sqrt{2}} = \sqrt{2}\).
\(\tan 45^\circ = 1\).
Step 2: Calculate \(\sec^2 45^\circ\) and \(\tan^2 45^\circ\)
\(\sec^2 45^\circ = (\sec 45^\circ)^2 = (\sqrt{2})^2 = 2\).
\(\tan^2 45^\circ = (\tan 45^\circ)^2 = (1)^2 = 1\).
Step 3: Calculate the expression \(\sec^2 45^\circ - \tan^2 45^\circ\)
\[ \sec^2 45^\circ - \tan^2 45^\circ = 2 - 1 = 1 \]
Method 2: Using the Pythagorean Identity
Step 1: Recall the Pythagorean identity involving secant and tangent
One of the fundamental Pythagorean trigonometric identities is:
\[ 1 + \tan^2\theta = \sec^2\theta \]
Step 2: Rearrange the identity
Subtract \(\tan^2\theta\) from both sides of the identity:
\[ \sec^2\theta - \tan^2\theta = 1 \]
This identity holds true for any angle \(\theta\) for which \(\sec\theta\) and \(\tan\theta\) are defined (i.e., \(\theta\) is not an odd multiple of \(90^\circ\)).
Step 3: Apply the identity for \(\theta = 45^\circ\)
For \(\theta = 45^\circ\), the identity directly gives:
\[ \sec^2 45^\circ - \tan^2 45^\circ = 1 \]
Both methods yield the value 1. This matches option (4).