To solve the limit problem, we evaluate: \(\lim\limits_{n \rightarrow \infty}\left(1+\frac{1}{2^n}+\frac{1}{3^n}+\dots+\frac{1}{2023^n}\right)^\frac{1}{n}\).
The expression inside the limit is a geometric-like series. As \(n\) approaches infinity, terms like \(\frac{1}{k^n}\) for \(k \geq 2\) tend towards zero because \(k^n\) grows exponentially.
Step-by-step Solution:
\(\left(1+\frac{1}{2^n}+\frac{1}{3^n}+\dots+\frac{1}{2023^n}\right) \approx 1\) as \(n \to \infty\).
Thus, \(\lim\limits_{n \rightarrow \infty}\left(1+\frac{1}{2^n}+\frac{1}{3^n}+\dots+\frac{1}{2023^n}\right)^\frac{1}{n} = 1\).
This value, \(1.00\), is firmly within the given range [0.99, 1.01].