To evaluate the limit:
\[ L = \lim_{x \to \infty} \left( \frac{x^2 - 2x + 1}{x^2 - 4x + 2} \right)^{2x}, \]
we proceed with the following steps:
1. Take the Natural Logarithm:
\[
\ln L = \lim_{x \to \infty} 2x \ln \left( \frac{x^2 - 2x + 1}{x^2 - 4x + 2} \right)
\]
2. Simplify the Argument:
\[
\ln L = \lim_{x \to \infty} 2x \ln \left( 1 + \frac{2x - 1}{x^2 - 4x + 2} \right)
\]
3. Apply Logarithmic Approximation:
For small \( u \), \( \ln(1 + u) \approx u - \frac{u^2}{2} \). Keeping only the dominant term:
\[
\ln L \approx \lim_{x \to \infty} 2x \left( \frac{2x - 1}{x^2 - 4x + 2} \right)
\]
4. Simplify the Expression:
\[
\ln L = \lim_{x \to \infty} \frac{4x^2 - 2x}{x^2 - 4x + 2}
\]
5. Divide by \( x^2 \):
\[
\ln L = \lim_{x \to \infty} \frac{4 - \frac{2}{x}}{1 - \frac{4}{x} + \frac{2}{x^2}} = 4
\]
6. Exponentiate to Find \( L \):
\[
L = e^4
\]
Final Answer:
The value of the limit is \( \boxed{e^4} \).
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to