To evaluate the limit:
\[ L = \lim_{x \to \infty} \left( \frac{x^2 - 2x + 1}{x^2 - 4x + 2} \right)^{2x}, \]
we proceed with the following steps:
1. Take the Natural Logarithm:
\[
\ln L = \lim_{x \to \infty} 2x \ln \left( \frac{x^2 - 2x + 1}{x^2 - 4x + 2} \right)
\]
2. Simplify the Argument:
\[
\ln L = \lim_{x \to \infty} 2x \ln \left( 1 + \frac{2x - 1}{x^2 - 4x + 2} \right)
\]
3. Apply Logarithmic Approximation:
For small \( u \), \( \ln(1 + u) \approx u - \frac{u^2}{2} \). Keeping only the dominant term:
\[
\ln L \approx \lim_{x \to \infty} 2x \left( \frac{2x - 1}{x^2 - 4x + 2} \right)
\]
4. Simplify the Expression:
\[
\ln L = \lim_{x \to \infty} \frac{4x^2 - 2x}{x^2 - 4x + 2}
\]
5. Divide by \( x^2 \):
\[
\ln L = \lim_{x \to \infty} \frac{4 - \frac{2}{x}}{1 - \frac{4}{x} + \frac{2}{x^2}} = 4
\]
6. Exponentiate to Find \( L \):
\[
L = e^4
\]
Final Answer:
The value of the limit is \( \boxed{e^4} \).
200 ml of an aqueous solution contains 3.6 g of Glucose and 1.2 g of Urea maintained at a temperature equal to 27$^{\circ}$C. What is the Osmotic pressure of the solution in atmosphere units?
Given Data R = 0.082 L atm K$^{-1}$ mol$^{-1}$
Molecular Formula: Glucose = C$_6$H$_{12}$O$_6$, Urea = NH$_2$CONH$_2$