Step 1: In a single slit diffraction experiment, the angular width of the central diffraction fringe is given by:
\[
\theta = \frac{\lambda}{a}
\]
where \( \lambda \) is the wavelength of light, and \( a \) is the width of the slit.
Step 2: The linear width of the central bright fringe \( Y \) on the screen can be found using:
\[
Y = \theta \times f
\]
where \( f \) is the focal length of the lens.
Step 3: Substituting the values:
\[
\lambda = 500 \, {nm} = 5 \times 10^{-7} \, {m}, \quad a = 5 \, {mm} = 5 \times 10^{-3} \, {m}, \quad f = 20 \, {cm} = 0.2 \, {m}.
\]
Thus,
\[
\theta = \frac{5 \times 10^{-7}}{5 \times 10^{-3}} = 1 \times 10^{-4} \, {radians}.
\]
Step 4: The linear size of the central fringe is:
\[
Y = \theta \times f = (1 \times 10^{-4}) \times 0.2 = 2 \times 10^{-5} \, {m}.
\]
Thus, the size of the central bright fringe is \( 2 \times 10^{-5} \, {m} \).