Step 1: Identify dominant term.
For large \(n\), among \(3^n, 5^n, 7^n,\) the term \(7^n\) dominates the sum.
Step 2: Simplify the limit.
\[
\lim_{n \to \infty} \left(3^n + 5^n + 7^n\right)^{1/n}
= \lim_{n \to \infty} 7 \left(\left(\frac{3}{7}\right)^n + \left(\frac{5}{7}\right)^n + 1\right)^{1/n}.
\]
Step 3: Evaluate limit inside parentheses.
As \(n \to \infty,\) \(\left(\frac{3}{7}\right)^n, \left(\frac{5}{7}\right)^n \to 0.\)
Thus,
\[
\left(\left(\frac{3}{7}\right)^n + \left(\frac{5}{7}\right)^n + 1\right)^{1/n} \to 1.
\]
Step 4: Conclusion.
\[
\lim_{n \to \infty} (3^n + 5^n + 7^n)^{1/n} = 7.
\]