Step 1: Evaluate \( \oint_C e^z \, dz \). 
The function \( e^z \) is analytic everywhere in the complex plane, including inside and on the unit circle \( C \). According to Cauchy's integral theorem, the contour integral of any analytic function over a closed curve is zero: \[ \oint_C e^z \, dz = 0. \] Step 2: Evaluate \( \oint_C z^n \, dz \). 
For \( n \neq -1 \), the function \( z^n \) is analytic inside and on the unit circle. Hence, by Cauchy's theorem, the integral is zero: \[ \oint_C z^n \, dz = 0 \quad {(for \( n \neq -1 \))}. \] Since the question specifies \( n \) as an even integer, it satisfies the condition for \( n \neq -1 \). 
Step 3: Evaluate \( \oint_C \cos z \, dz \). 
The function \( \cos z \) is analytic everywhere, so its contour integral over the unit circle is zero: \[ \oint_C \cos z \, dz = 0. \] Step 4: Evaluate \( \oint_C \sec z \, dz \). 
The function \( \sec z \) has singularities at odd multiples of \( \pi/2 \), so it does not satisfy the conditions of Cauchy's theorem and the integral does not vanish: \[ \oint_C \sec z \, dz \neq 0. \] Thus, the correct answers are (A) and (B).
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.
A positive-edge-triggered sequential circuit is shown below. There are no timing violations in the circuit. Input \( P_0 \) is set to logic ‘0’ and \( P_1 \) is set to logic ‘1’ at all times. The timing diagram of the inputs \( SEL \) and \( S \) are also shown below. The sequence of output \( Y \) from time \( T_0 \) to \( T_3 \) is _________.

Consider a part of an electrical network as shown below. Some node voltages, and the current flowing through the \( 3\,\Omega \) resistor are as indicated. 
The voltage (in Volts) at node \( X \) is _________. 

 
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is: