Step 1: Evaluate \( \oint_C e^z \, dz \).
The function \( e^z \) is analytic everywhere in the complex plane, including inside and on the unit circle \( C \). According to Cauchy's integral theorem, the contour integral of any analytic function over a closed curve is zero: \[ \oint_C e^z \, dz = 0. \] Step 2: Evaluate \( \oint_C z^n \, dz \).
For \( n \neq -1 \), the function \( z^n \) is analytic inside and on the unit circle. Hence, by Cauchy's theorem, the integral is zero: \[ \oint_C z^n \, dz = 0 \quad {(for \( n \neq -1 \))}. \] Since the question specifies \( n \) as an even integer, it satisfies the condition for \( n \neq -1 \).
Step 3: Evaluate \( \oint_C \cos z \, dz \).
The function \( \cos z \) is analytic everywhere, so its contour integral over the unit circle is zero: \[ \oint_C \cos z \, dz = 0. \] Step 4: Evaluate \( \oint_C \sec z \, dz \).
The function \( \sec z \) has singularities at odd multiples of \( \pi/2 \), so it does not satisfy the conditions of Cauchy's theorem and the integral does not vanish: \[ \oint_C \sec z \, dz \neq 0. \] Thus, the correct answers are (A) and (B).
The directional derivative of the function \( f \) given below at the point \( (1, 0) \) in the direction of \( \frac{1}{2} (\hat{i} + \sqrt{3} \hat{j}) \) is (rounded off to 1 decimal place). \[ f(x, y) = x^2 + xy^2 \]
If \( C \) is the unit circle in the complex plane with its center at the origin, then the value of \( n \) in the equation given below is (rounded off to 1 decimal place). \[ \int_C \frac{z^3}{(z^2 + 4)(z^2 - 4)} \, dz = 2 \pi i n \]
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).
The diode in the circuit shown below is ideal. The input voltage (in Volts) is given by \[ V_I = 10 \sin(100\pi t), \quad {where time} \, t \, {is in seconds.} \] The time duration (in ms, rounded off to two decimal places) for which the diode is forward biased during one period of the input is (answer in ms).