Step 1: Evaluate \( \oint_C e^z \, dz \).
The function \( e^z \) is analytic everywhere in the complex plane, including inside and on the unit circle \( C \). According to Cauchy's integral theorem, the contour integral of any analytic function over a closed curve is zero: \[ \oint_C e^z \, dz = 0. \] Step 2: Evaluate \( \oint_C z^n \, dz \).
For \( n \neq -1 \), the function \( z^n \) is analytic inside and on the unit circle. Hence, by Cauchy's theorem, the integral is zero: \[ \oint_C z^n \, dz = 0 \quad {(for \( n \neq -1 \))}. \] Since the question specifies \( n \) as an even integer, it satisfies the condition for \( n \neq -1 \).
Step 3: Evaluate \( \oint_C \cos z \, dz \).
The function \( \cos z \) is analytic everywhere, so its contour integral over the unit circle is zero: \[ \oint_C \cos z \, dz = 0. \] Step 4: Evaluate \( \oint_C \sec z \, dz \).
The function \( \sec z \) has singularities at odd multiples of \( \pi/2 \), so it does not satisfy the conditions of Cauchy's theorem and the integral does not vanish: \[ \oint_C \sec z \, dz \neq 0. \] Thus, the correct answers are (A) and (B).
Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.
After the 1st round, the 4th student behind P leaves the game.
After the 2nd round, the 5th student behind Q leaves the game.
After the 3rd round, the 3rd student behind V leaves the game.
After the 4th round, the 4th student behind U leaves the game.
Who all are left in the game after the 4th round?

Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
Two fair dice (with faces labeled 1, 2, 3, 4, 5, and 6) are rolled. Let the random variable \( X \) denote the sum of the outcomes obtained. The expectation of \( X \) is _________ (rounded off to two decimal places).
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
A positive-edge-triggered sequential circuit is shown below. There are no timing violations in the circuit. Input \( P_0 \) is set to logic ‘0’ and \( P_1 \) is set to logic ‘1’ at all times. The timing diagram of the inputs \( SEL \) and \( S \) are also shown below. The sequence of output \( Y \) from time \( T_0 \) to \( T_3 \) is _________.
