Question:

The value of \( K_c \) for the equilibrium reaction \[ 2 {NO}_2(g) \rightleftharpoons {N}_2{O}_4(g) \] is \(2 \times 10^{-40} \, {mol}^{-1} \, {dm}^3\) at 298 K. If the equilibrium concentration of \({NO}_2\) is \(2 \times 10^{-2}\) M, the concentration of \({N}_2{O}_4\) is:

Show Hint

Use the equilibrium expression to solve for unknown concentrations when given \(K_c\).
Updated On: Mar 10, 2025
  • \(6 \times 10^{-42} \, {M}\)
  • \(12 \times 10^{-44} \, {M}\)
  • \(8 \times 10^{-44} \, {M}\)
  • \(2 \times 10^{-44} \, {M}\)
  • \(4 \times 10^{-44} \, {M}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The equilibrium constant \( K_c \) for the reaction is given by: \[ K_c = \frac{[{N}_2{O}_4]}{[{NO}_2]^2} \] Given that the concentration of \({NO}_2\) at equilibrium is \(2 \times 10^{-2} \, {M}\) and that \( K_c = 2 \times 10^{-40} \, {mol}^{-1} \, {dm}^3 \), we can solve for the concentration of \({N}_2{O}_4\): \[ 2 \times 10^{-40} = \frac{[{N}_2{O}_4]}{(2 \times 10^{-2})^2} \] \[ [{N}_2{O}_4] = 2 \times 10^{-40} \times (4 \times 10^{-4}) = 8 \times 10^{-44} \, {M} \]
Was this answer helpful?
0
0