∫ √(2x2 - 5x + 2) dx = ∫ (41/60) dx,
and
-1/2 > α > 0, then α = ?
The number of common roots among the 12th and 30th roots of unity is ?
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that i² = 1. So, for every equation which does not have a real solution we can use i = -1.
Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b and c are the real numbers.