Step 1: Understanding the Question
We need to evaluate a definite integral over a symmetric interval \([-a, a]\). The integrand has a term of the form \(a^{f(x)}\) in the denominator, which suggests using the "King's property" of definite integrals.
Step 2: Key Formula or Approach
We use the property \(\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx\). For an interval \([-a, a]\), this becomes \(\int_{-a}^{a} f(x) dx = \int_{-a}^{a} f(-x) dx\).
Step 3: Detailed Explanation
Let the given integral be \(I\).
\[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\sin^2x}{1+\pi^{\sin x}} dx \quad \cdots (1) \]
Apply the property \( \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx \). Here \(a = -\frac{\pi}{2}, b = \frac{\pi}{2}\), so \(a+b=0\). We replace \(x\) with \(-x\).
\[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\sin^2(-x)}{1+\pi^{\sin(-x)}} dx \]
Since \(\sin(-x) = -\sin x\) and \(\sin^2(-x) = (-\sin x)^2 = \sin^2 x\), we get:
\[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\sin^2x}{1+\pi^{-\sin x}} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\sin^2x}{1+\frac{1}{\pi^{\sin x}}} dx \]
\[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+\sin^2x)\pi^{\sin x}}{\pi^{\sin x}+1} dx \quad \cdots (2) \]
Now, we add equations (1) and (2):
\[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{1+\sin^2x}{1+\pi^{\sin x}} + \frac{(1+\sin^2x)\pi^{\sin x}}{1+\pi^{\sin x}} \right) dx \]
\[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+\sin^2x)(1+\pi^{\sin x})}{1+\pi^{\sin x}} dx \]
\[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+\sin^2x) dx \]
Using the identity \(\sin^2x = \frac{1-\cos(2x)}{2}\):
\[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{1-\cos(2x)}{2}\right) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{3}{2} - \frac{\cos(2x)}{2}\right) dx \]
\[ 2I = \left[ \frac{3}{2}x - \frac{\sin(2x)}{4} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \]
\[ 2I = \left( \frac{3}{2}\left(\frac{\pi}{2}\right) - \frac{\sin(\pi)}{4} \right) - \left( \frac{3}{2}\left(-\frac{\pi}{2}\right) - \frac{\sin(-\pi)}{4} \right) \]
Since \(\sin(\pi) = 0\) and \(\sin(-\pi) = 0\):
\[ 2I = \left( \frac{3\pi}{4} - 0 \right) - \left( -\frac{3\pi}{4} - 0 \right) = \frac{3\pi}{4} + \frac{3\pi}{4} = \frac{6\pi}{4} = \frac{3\pi}{2} \]
\[ I = \frac{3\pi}{4} \]
Step 4: Final Answer
The value of the integral is \(\frac{3\pi}{4}\).