Step 1: Evaluate the inner integral.
The inner integral is with respect to \( x \), so we compute:
\[
\int_2^5 x^2 y \, dx.
\]
Since \( y \) is a constant with respect to \( x \), we can factor it out:
\[
y \int_2^5 x^2 \, dx.
\]
Now, integrate \( x^2 \):
\[
\int x^2 \, dx = \frac{x^3}{3}.
\]
Evaluating from 2 to 5:
\[
\left[\frac{x^3}{3}\right]_2^5 = \frac{5^3}{3} - \frac{2^3}{3} = \frac{125}{3} - \frac{8}{3} = \frac{117}{3} = 39.
\]
Thus, the inner integral becomes:
\[
y \times 39 = 39y.
\]
Step 2: Evaluate the outer integral.
Now we evaluate the outer integral:
\[
\int_1^3 39y \, dy.
\]
Integrating \( 39y \):
\[
\int 39y \, dy = \frac{39y^2}{2}.
\]
Evaluating from 1 to 3:
\[
\left[\frac{39y^2}{2}\right]_1^3 = \frac{39 \times 3^2}{2} - \frac{39 \times 1^2}{2} = \frac{39 \times 9}{2} - \frac{39 \times 1}{2} = \frac{351}{2} - \frac{39}{2} = \frac{312}{2} = 156.
\]
Thus, the value of the integral is:
\[
\boxed{156}.
\]