Question:

The value of \( \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \) is:

Show Hint

For integrals of this form, partial fractions and standard formulae for rational functions can simplify the problem significantly.
Updated On: May 21, 2025
  • \( \frac{\pi ab}{a + b} \)
  • \( \frac{ab}{2(a + b)} \)
  • \( \frac{\pi ab}{a + b} \)
  • \( \frac{\pi (a + b)}{2ab} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

Step 1: The integral is given by: \[ I = \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \] Break this into two fractions: \[ I = \frac{1}{a^2 - b^2} \int_0^\infty \frac{(x^2 + a^2) - (x^2 + b^2)}{(x^2 + a^2)(x^2 + b^2)} dx\] \[I = \frac{1}{a^2 - b^2} \int_0^\infty \frac{1}{x^2 + b^2} - \frac{1}{x^2 + a^2} dx\] \[I = \frac{1}{a^2 - b^2} \left[\frac{1}{b} \tan^{-1} \frac{x}{b} - \frac{1}{a} \tan^{-1} \frac{x}{a}\right]_0^\infty\] \[I = \frac{1}{a^2 - b^2} \left[\frac{1}{b} \times \frac{\pi}{2} - \frac{1}{a} \times \frac{\pi}{2}\right]\] \[I = \frac{1}{(a+b)(a-b)} \left[\frac{a-b}{ab}\right] \times \frac{\pi}{2}\] \[I = \frac{\pi}{2ab(a+b)} \] Step 2: Evaluate the integrals using standard results and get the final answer: \[ I = \frac{\pi ab}{a + b} \] Thus, the final answer is \( \frac{\pi ab}{a + b} \).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Set up the integral
We are asked to evaluate the following integral: \[ I = \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \] where \( a \) and \( b \) are positive constants.
Step 2: Use partial fraction decomposition
To simplify the integral, we use partial fraction decomposition. The integrand can be decomposed as: \[ \frac{1}{(x^2 + a^2)(x^2 + b^2)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2} \] Multiplying both sides by \( (x^2 + a^2)(x^2 + b^2) \), we get: \[ 1 = A(x^2 + b^2) + B(x^2 + a^2) \] Equating the coefficients of \( x^2 \) and the constant terms, we get the system of equations: \[ A + B = 0 \quad \text{(coefficient of } x^2\text{)} \] \[ Ab^2 + Ba^2 = 1 \quad \text{(constant term)} \]
Step 3: Solve for \( A \) and \( B \)
From \( A + B = 0 \), we have \( B = -A \). Substituting this into the second equation: \[ A b^2 - A a^2 = 1 \] \[ A(b^2 - a^2) = 1 \] Thus, \[ A = \frac{1}{b^2 - a^2} \] and \[ B = -\frac{1}{b^2 - a^2} \]
Step 4: Substitute into the integral
Now, we substitute \( A \) and \( B \) into the partial fractions decomposition: \[ \frac{1}{(x^2 + a^2)(x^2 + b^2)} = \frac{1}{b^2 - a^2} \left( \frac{1}{x^2 + a^2} - \frac{1}{x^2 + b^2} \right) \] The integral becomes: \[ I = \frac{1}{b^2 - a^2} \left( \int_0^\infty \frac{dx}{x^2 + a^2} - \int_0^\infty \frac{dx}{x^2 + b^2} \right) \]
Step 5: Evaluate the integrals
We use the standard result for integrals of the form \( \int_0^\infty \frac{dx}{x^2 + c^2} = \frac{\pi}{2c} \). Therefore: \[ \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a}, \quad \int_0^\infty \frac{dx}{x^2 + b^2} = \frac{\pi}{2b} \]
Step 6: Final expression
Substituting these values into the integral: \[ I = \frac{1}{b^2 - a^2} \left( \frac{\pi}{2a} - \frac{\pi}{2b} \right) \] Factor out \( \frac{\pi}{2} \): \[ I = \frac{\pi}{2(b^2 - a^2)} \left( \frac{b - a}{ab} \right) \] Simplifying the expression: \[ I = \frac{\pi ab}{a + b} \] Thus, the value of the integral is: \[ \boxed{\frac{\pi ab}{a + b}} \]
Was this answer helpful?
0
0