Step 1: Set up the integral
We are asked to evaluate the following integral:
\[
I = \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)}
\]
where \( a \) and \( b \) are positive constants.
Step 2: Use partial fraction decomposition
To simplify the integral, we use partial fraction decomposition. The integrand can be decomposed as:
\[
\frac{1}{(x^2 + a^2)(x^2 + b^2)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2}
\]
Multiplying both sides by \( (x^2 + a^2)(x^2 + b^2) \), we get:
\[
1 = A(x^2 + b^2) + B(x^2 + a^2)
\]
Equating the coefficients of \( x^2 \) and the constant terms, we get the system of equations:
\[
A + B = 0 \quad \text{(coefficient of } x^2\text{)}
\]
\[
Ab^2 + Ba^2 = 1 \quad \text{(constant term)}
\]
Step 3: Solve for \( A \) and \( B \)
From \( A + B = 0 \), we have \( B = -A \). Substituting this into the second equation:
\[
A b^2 - A a^2 = 1
\]
\[
A(b^2 - a^2) = 1
\]
Thus,
\[
A = \frac{1}{b^2 - a^2}
\]
and
\[
B = -\frac{1}{b^2 - a^2}
\]
Step 4: Substitute into the integral
Now, we substitute \( A \) and \( B \) into the partial fractions decomposition:
\[
\frac{1}{(x^2 + a^2)(x^2 + b^2)} = \frac{1}{b^2 - a^2} \left( \frac{1}{x^2 + a^2} - \frac{1}{x^2 + b^2} \right)
\]
The integral becomes:
\[
I = \frac{1}{b^2 - a^2} \left( \int_0^\infty \frac{dx}{x^2 + a^2} - \int_0^\infty \frac{dx}{x^2 + b^2} \right)
\]
Step 5: Evaluate the integrals
We use the standard result for integrals of the form \( \int_0^\infty \frac{dx}{x^2 + c^2} = \frac{\pi}{2c} \). Therefore:
\[
\int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a}, \quad \int_0^\infty \frac{dx}{x^2 + b^2} = \frac{\pi}{2b}
\]
Step 6: Final expression
Substituting these values into the integral:
\[
I = \frac{1}{b^2 - a^2} \left( \frac{\pi}{2a} - \frac{\pi}{2b} \right)
\]
Factor out \( \frac{\pi}{2} \):
\[
I = \frac{\pi}{2(b^2 - a^2)} \left( \frac{b - a}{ab} \right)
\]
Simplifying the expression:
\[
I = \frac{\pi ab}{a + b}
\]
Thus, the value of the integral is:
\[
\boxed{\frac{\pi ab}{a + b}}
\]