Step 1: Simplify the given expression
We are asked to evaluate the integral:
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sin\left( \frac{\pi}{4} + x \right) + \sin\left( \frac{3\pi}{4} + x \right)}{\cos x + \sin x} \, dx
\]
Using the trigonometric identity for the sum of sines:
\[
\sin(A + x) = \sin A \cos x + \cos A \sin x
\]
We can rewrite the two sine terms:
\[
\sin\left( \frac{\pi}{4} + x \right) = \sin\frac{\pi}{4} \cos x + \cos\frac{\pi}{4} \sin x = \frac{\sqrt{2}}{2} \cos x + \frac{\sqrt{2}}{2} \sin x
\]
\[
\sin\left( \frac{3\pi}{4} + x \right) = \sin\frac{3\pi}{4} \cos x + \cos\frac{3\pi}{4} \sin x = \frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \sin x
\]
Now, add these two sine terms together:
\[
\sin\left( \frac{\pi}{4} + x \right) + \sin\left( \frac{3\pi}{4} + x \right) = \left( \frac{\sqrt{2}}{2} \cos x + \frac{\sqrt{2}}{2} \sin x \right) + \left( \frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \sin x \right)
\]
\[
= \sqrt{2} \cos x
\]
Thus, the integral simplifies to:
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{2} \cos x}{\cos x + \sin x} \, dx
\]
Step 2: Simplify the denominator
Next, we simplify the denominator \( \cos x + \sin x \). Notice that:
\[
\cos x + \sin x = \sqrt{2} \left( \frac{1}{\sqrt{2}} \cos x + \frac{1}{\sqrt{2}} \sin x \right)
\]
This is equivalent to:
\[
\cos x + \sin x = \sqrt{2} \cos \left( x - \frac{\pi}{4} \right)
\]
So the integral becomes:
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{2} \cos x}{\sqrt{2} \cos \left( x - \frac{\pi}{4} \right)} \, dx = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos \left( x - \frac{\pi}{4} \right)} \, dx
\]
Step 3: Use a substitution to simplify further
Let’s perform the substitution:
\[
u = x - \frac{\pi}{4}, \quad du = dx
\]
When \( x = 0 \), \( u = -\frac{\pi}{4} \), and when \( x = \frac{\pi}{2} \), \( u = \frac{\pi}{4} \).
The integral becomes:
\[
I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos\left( u + \frac{\pi}{4} \right)}{\cos u} \, du
\]
Now, use the identity:
\[
\cos\left( u + \frac{\pi}{4} \right) = \cos u \cos \frac{\pi}{4} - \sin u \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \cos u - \frac{\sqrt{2}}{2} \sin u
\]
Thus, the integral becomes:
\[
I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{\sqrt{2}}{2} \cos u - \frac{\sqrt{2}}{2} \sin u}{\cos u} \, du
\]
\[
I = \frac{\sqrt{2}}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( 1 - \tan u \right) du
\]
Step 4: Solve the integral
Now, split the integral:
\[
I = \frac{\sqrt{2}}{2} \left[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 1 \, du - \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan u \, du \right]
\]
The first integral:
\[
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 1 \, du = \frac{\pi}{2}
\]
The second integral:
\[
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan u \, du = 0
\]
(since \(\tan u\) is an odd function and the limits are symmetric).
Thus, the value of the integral is:
\[
I = \frac{\sqrt{2}}{2} \times \frac{\pi}{2} = \frac{\pi}{2\sqrt{2}}
\]
Step 5: Conclusion
The value of the integral is:
\[
\boxed{\frac{\pi}{2\sqrt{2}}}
\]