We are asked to solve the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos^{2024} x}{\sin^{2024} x + \cos^{2024} x} \, dx \] Step 1: Notice that the integrand has symmetry. Let's perform a substitution \( x \to \frac{\pi}{2} - x \).
Under this substitution:
\[ \sin \left( \frac{\pi}{2} - x \right) = \cos x, \quad \cos \left( \frac{\pi}{2} - x \right) = \sin x. \] Step 2: Substituting in the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos^{2024} \left( \frac{\pi}{2} - x \right)}{\sin^{2024} \left( \frac{\pi}{2} - x \right) + \cos^{2024} \left( \frac{\pi}{2} - x \right)} \, dx \] This transforms the integral to: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^{2024} x}{\cos^{2024} x + \sin^{2024} x} \, dx. \] Step 3: Adding the two equations, we get: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\cos^{2024} x}{\sin^{2024} x + \cos^{2024} x} + \frac{\sin^{2024} x}{\sin^{2024} x + \cos^{2024} x} \right) \, dx \] Simplifying the integrand: \[ 2I = \int_0^{\frac{\pi}{2}} 1 \, dx \] \[ 2I = \frac{\pi}{2} \] Step 4: Therefore, \( I = \frac{\pi}{4} \).
Thus, the value of the integral is \( \frac{\pi}{4} \).
Therefore, the correct answer is option (A).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: