Step 1: Integral of the given form
The integral \( \int \frac{dx}{\sqrt{a^2 - x^2}} \) is a standard result:
\[
\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + C.
\]
Step 2: Substitute limits
Here, \( a = 3 \), so:
\[
\int_0^3 \frac{dx}{\sqrt{9 - x^2}} = \arcsin\left(\frac{x}{3}\right) \Big|_0^3.
\]
Step 3: Evaluate the bounds
\[
\arcsin\left(\frac{3}{3}\right) - \arcsin\left(\frac{0}{3}\right) = \arcsin(1) - \arcsin(0).
\]
Since \( \arcsin(1) = \frac{\pi}{2} \) and \( \arcsin(0) = 0 \), we get:
\[
\frac{\pi}{2} - 0 = \frac{\pi}{2}.
\]
Step 4: Verify the options
The correct value is \( \frac{\pi}{2} \), which corresponds to option (C).