Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A stationary tank is cylindrical in shape with two hemispherical ends and is horizontal, as shown in the figure. \(R\) is the radius of the cylinder as well as of the hemispherical ends. The tank is half filled with an oil of density \(\rho\) and the rest of the space in the tank is occupied by air. The air pressure, inside the tank as well as outside it, is atmospheric. The acceleration due to gravity (\(g\)) acts vertically downward. The net horizontal force applied by the oil on the right hemispherical end (shown by the bold outline in the figure) is:
A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?