Step 1: Use trigonometric identity.
\[
\sin^2 x = \frac{1 - \cos 2x}{2}
\]
Step 2: Substitute in integral.
\[
I = \int_0^{\pi/2} \sin^2 x \, dx = \int_0^{\pi/2} \frac{1 - \cos 2x}{2} \, dx
\]
\[
= \frac{1}{2} \int_0^{\pi/2} dx - \frac{1}{2} \int_0^{\pi/2} \cos 2x \, dx
\]
Step 3: Evaluate separately.
\[
\int_0^{\pi/2} dx = \frac{\pi}{2}
\]
\[
\int_0^{\pi/2} \cos 2x \, dx = \left[\frac{\sin 2x}{2}\right]_0^{\pi/2} = \frac{\sin \pi}{2} - \frac{\sin 0}{2} = 0
\]
Step 4: Final value of integral.
\[
I = \frac{1}{2} . \frac{\pi}{2} = \frac{\pi}{4}
\]
Step 5: Multiply with coefficient.
\[
\frac{4}{\pi} . I = \frac{4}{\pi} . \frac{\pi}{4} = 1
\]
Final Answer:
\[
\boxed{1.00}
\]