We are tasked with simplifying the given expression:
\[
\frac{(1 + \cot \theta - \csc \theta)(1 + \tan \theta + \sec \theta)}{\tan^2 \theta + \cot^2 \theta - \sec^2 \theta \csc^2 \theta}
\]
First, apply the standard trigonometric identities to break down the terms:
\[
\cot \theta = \frac{\cos \theta}{\sin \theta}, \quad \csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta}
\]
Substituting these into the expression:
\[
\text{Numerator: } (1 + \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta})(1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta})
\]
Simplifying each term:
\[
\text{Numerator: } \left( \frac{\sin \theta + \cos \theta - 1}{\sin \theta} \right) \left( \frac{\cos \theta + \sin \theta + 1}{\cos \theta} \right)
\]
Now, simplify the denominator:
\[
\tan^2 \theta + \cot^2 \theta - \sec^2 \theta \csc^2 \theta
\]
Using the identity \( \tan^2 \theta + \cot^2 \theta = \sec^2 \theta \csc^2 \theta - 1 \), the denominator simplifies to:
\[
1
\]
Thus, the whole expression simplifies to:
\[
(1 + \cot \theta - \csc \theta)(1 + \tan \theta + \sec \theta) = -1
\]
Thus, the value of the given expression is \( -1 \).