Let’s evaluate the expression for \( p \) for different positive integer values of \( x \), \( y \), and \( z \).
Step 1:
For each of \( x \), \( y \), and \( z \), we evaluate \( \left( (x - 1)^2 / |x| \right) + 2 \).
- For \( x = 1 \):
\( \left( (1 - 1)^2 / |1| \right) + 2 = 0 + 2 = 2 \)
- For \( x = 2 \):
\( \left( (2 - 1)^2 / |2| \right) + 2 = 1 + 2 = 3 \)
- For \( x = 3 \):
\( \left( (3 - 1)^2 / |3| \right) + 2 = 4 / 3 + 2 \approx 3.33 \)
Step 2:
Now calculate for different values of \( p \).
Let’s assume \( x = 2 \), \( y = 2 \), and \( z = 2 \):
- For \( x = y = z = 2 \):
\( p = (3) + (3) + (3) = 9 \), which is greater than 6.
Step 3:
Thus, \( p \) can sometimes be less than 6, depending on the values of \( x \), \( y \), and \( z \). Therefore, the correct answer is (B) Sometimes.