The relation between \( \Delta G^\circ \) and the equilibrium constant \( K_C \) is given by the following equation:
\[
\Delta G^\circ = -RT \ln K_C
\]
Where:
- \( \Delta G^\circ \) is the standard Gibbs free energy change,
- \( R \) is the universal gas constant \( 8.314 \, \text{J/mol·K} \),
- \( T \) is the temperature in Kelvin,
- \( K_C \) is the equilibrium constant.
Given that \( \Delta G^\circ = 13.8 \, \text{kJ/mol} = 13800 \, \text{J/mol} \) and \( T = 298 \, \text{K} \), we can rearrange the equation to solve for \( K_C \):
\[
K_C = e^{-\frac{\Delta G^\circ}{RT}}
\]
Substituting the known values:
\[
K_C = e^{-\frac{13800}{8.314 \times 298}} = e^{-5.56} = 3.81 \times 10^{-3}
\]
Thus, the correct answer is Option (D).