Step 1: Simplify \(\sinh^{-1}(\sqrt{8})\)
Let \( \theta = \sinh^{-1}(\sqrt{8}) \). Then:
\(
\sinh(\theta) = \sqrt{8}.
\)
Using the identity \( \cosh^2(\theta) - \sinh^2(\theta) = 1 \), we get:
\(
\cosh(\theta) = \sqrt{1 + \sinh^2(\theta)} = \sqrt{1 + 8} = 3.
\)
Step 2: Simplify \(\cosh^{-1}(5)\)
Let \( \phi = \cosh^{-1}(5) \). Then:
\(
\cosh(\phi) = 5.
\)
Using the identity \( \cosh^2(\phi) - \sinh^2(\phi) = 1 \), we get:
\(
\sinh(\phi) = \sqrt{\cosh^2(\phi) - 1} = \sqrt{25 - 1} = \sqrt{24} = 2\sqrt{6}.
\)
Step 3: Use the Addition Formula for Hyperbolic Cosine
The addition formula for hyperbolic cosine is:
\(
\cosh(A + B) = \cosh(A)\cosh(B) + \sinh(A)\sinh(B).
\)
Substitute \( A = \theta \) and \( B = \phi \):
\(
\cosh(\theta + \phi) = \cosh(\theta)\cosh(\phi) + \sinh(\theta)\sinh(\phi).
\)
Substitute the known values:
\(
\cosh(\theta + \phi) = (3)(5) + (\sqrt{8})(2\sqrt{6}) = 15 + 2\sqrt{48} = 15 + 2 \cdot 4\sqrt{3} = 15 + 8\sqrt{3}.
\)
Step 4: Verify the Answer
The result \( 15 + 8\sqrt{3} \) corresponds to option 2.