>
Exams
>
Mathematics
>
Trigonometric Identities
>
the value of cosh left sin 1 left sqrt 8 right cos
Question:
The value of \( \cosh \left( \sin^{-1} \left( \sqrt{8} \right) + \cosh^{-1} 5 \right) \) is:
Show Hint
For expressions involving inverse trigonometric and hyperbolic functions, use appropriate identities to simplify and calculate the value.
AP EAMCET - 2024
AP EAMCET
Updated On:
May 18, 2025
\( \sqrt{6} + 4\sqrt{2} \)
\( 15 + 8\sqrt{3} \)
\( 6\sqrt{6} + 10\sqrt{2} \)
\( 8 - 15\sqrt{3} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Step 1: Simplify \(\sinh^{-1}(\sqrt{8})\)
Let \( \theta = \sinh^{-1}(\sqrt{8}) \). Then:
\( \sinh(\theta) = \sqrt{8}. \)
Using the identity \( \cosh^2(\theta) - \sinh^2(\theta) = 1 \), we get:
\( \cosh(\theta) = \sqrt{1 + \sinh^2(\theta)} = \sqrt{1 + 8} = 3. \)
Step 2: Simplify \(\cosh^{-1}(5)\)
Let \( \phi = \cosh^{-1}(5) \). Then:
\( \cosh(\phi) = 5. \)
Using the identity \( \cosh^2(\phi) - \sinh^2(\phi) = 1 \), we get:
\( \sinh(\phi) = \sqrt{\cosh^2(\phi) - 1} = \sqrt{25 - 1} = \sqrt{24} = 2\sqrt{6}. \)
Step 3: Use the Addition Formula for Hyperbolic Cosine
The addition formula for hyperbolic cosine is:
\( \cosh(A + B) = \cosh(A)\cosh(B) + \sinh(A)\sinh(B). \)
Substitute \( A = \theta \) and \( B = \phi \): \( \cosh(\theta + \phi) = \cosh(\theta)\cosh(\phi) + \sinh(\theta)\sinh(\phi). \)
Substitute the known values:
\( \cosh(\theta + \phi) = (3)(5) + (\sqrt{8})(2\sqrt{6}) = 15 + 2\sqrt{48} = 15 + 2 \cdot 4\sqrt{3} = 15 + 8\sqrt{3}. \)
Step 4: Verify the Answer
The result \( 15 + 8\sqrt{3} \) corresponds to option 2.
Download Solution in PDF
Was this answer helpful?
2
0
Top Questions on Trigonometric Identities
Prove that:
\[ \frac{\cos \theta - 2 \cos^3 \theta}{\sin \theta - 2 \sin^3 \theta} + \cot \theta = 0 \]
CBSE Class X - 2025
Mathematics
Trigonometric Identities
View Solution
The value of \( (\sin 70^\circ)(\cot 10^\circ \cot 70^\circ - 1) \) is:
JEE Main - 2025
Mathematics
Trigonometric Identities
View Solution
If $ \tan \theta + \cot \theta = 4 $, then find the value of $ \tan^3 \theta + \cot^3 \theta $.
BITSAT - 2025
Mathematics
Trigonometric Identities
View Solution
Find the value of $ \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ $.
BITSAT - 2025
Mathematics
Trigonometric Identities
View Solution
The value of $ \sin^2 30^\circ + \cos^2 60^\circ $ is:
BITSAT - 2025
Mathematics
Trigonometric Identities
View Solution
View More Questions
Questions Asked in AP EAMCET exam
A body of mass 1.5 kg is moving towards south with a uniform velocity of \( 8 { ms}^{-1} \). A force of \( 6 \) N is applied to the body towards east. The displacement of the body 3 seconds after the application of the force is:
AP EAMCET - 2024
thermal properties of matter
View Solution
If
\[ x = 3 \left[ \sin t - \log \left( \cot \frac{t}{2} \right) \right], \quad y = 6 \left[ \cos t + \log \left( \tan \frac{t}{2} \right) \right] \] then find \( \frac{dy}{dx} \).
AP EAMCET - 2024
Differentiation
View Solution
If \( M_1 \) and \( M_2 \) are the maximum values of \( \frac{1}{11 \cos 2x + 60 \sin 2x + 69} \) and \( 3 \cos^2 5x + 4\sin^2 5x \) respectively, then \( \frac{M_1}{M_2} = \):
AP EAMCET - 2024
Maxima and Minima
View Solution
The mass % of urea solution is 6. The total weight of the solution is 1000 g. What is its concentration in mol L\(^{-1}\)? (Density of water = 1.0 g mL\(^{-1}\))
(Given: C = 12u, N = 14u, O = 16u, H = 1u)
AP EAMCET - 2024
molecular mass of polymers
View Solution
At 300 K, 6 g of urea was dissolved in 500 mL of water. What is the osmotic pressure (in atm) of the resultant solution? (R = 0.082 L atm K$^{-1}$ mol$^{-1}$)
(C=12;N=14;O=16;H=1)
AP EAMCET - 2024
Colligative Properties
View Solution
View More Questions