If the function f(x) = \(\sqrt{x^2 - 4}\) satisfies the Lagrange’s Mean Value Theorem on \([2, 4]\), then the value of \( C \) is}
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be:
The theorem states that for a curve f(x) passing through two given points (a, f(a)), (b, f(b)), there is at least one point (c, f(c)) on the curve where the tangent is parallel to the secant passing via the two given points is the mean value theorem.
The mean value theorem is derived herein calculus for a function f(x): [a, b] → R, such that the function is continuous and differentiable across an interval.