The correct answer is: 6
\(l=∫_3^b \frac{1}{(x^2-1)(x^2-4)}dx=\frac{1}{3}(\frac{1}{x^2-4}-\frac{1}{x^2-1})dx\)
\(=ln((\frac{b-2}{b+2})\frac{(b+1)^2}{b-1}^2)-(In\,\frac{4}{5})\)
After simplification ,
\(\frac{49}{40}=\frac{(b-2)}{(b+2)}\frac{(b+1)^2}{(b-1)^2}.\frac{5}{4}\)
⇒ b = 6
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,