The correct answer is: 6
\(l=∫_3^b \frac{1}{(x^2-1)(x^2-4)}dx=\frac{1}{3}(\frac{1}{x^2-4}-\frac{1}{x^2-1})dx\)
\(=ln((\frac{b-2}{b+2})\frac{(b+1)^2}{b-1}^2)-(In\,\frac{4}{5})\)
After simplification ,
\(\frac{49}{40}=\frac{(b-2)}{(b+2)}\frac{(b+1)^2}{(b-1)^2}.\frac{5}{4}\)
⇒ b = 6
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,