We are asked to find the value of the integral \( \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} \, dx \).
We observe that the integrand has symmetry, so we can use a substitution technique to simplify the calculation. Let:
\( I = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} \, dx \).
By the symmetry of sine and cosine, we can make a substitution: \( x' = \frac{\pi}{2} - x \). This transforms the integral as follows:
\( I = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\cos^4 x}{\sin^4 x + \cos^4 x} \, dx \).
Now, adding the two integrals together, we get:
\( 2I = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\sin^4 x + \cos^4 x}{\sin^4 x + \cos^4 x} \, dx = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 1 \, dx \).
The integral of 1 with respect to \( x \) is simply \( x \), so we have:
\( 2I = \left[ x \right]_{\frac{\pi}{8}}^{\frac{3\pi}{8}} = \frac{3\pi}{8} - \frac{\pi}{8} = \frac{\pi}{4} \).
Thus, \( I = \frac{\pi}{8} \).
The correct answer is \( \frac{\pi}{8} \).
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals