We are given the expression \( 3\log_5{5} - 5\log_4{3} \). Let's break it down:
1. \( \log_5{5} = 1 \) because the logarithm of a number to the same base is always 1.
2. Therefore, \( 3\log_5{5} = 3 \times 1 = 3 \).
Now, for \( 5\log_4{3} \), we apply the change of base formula:
\[
\log_4{3} = \frac{\log{3}}{\log{4}}
\]
Since \( \log{4} = 2\log{2} \), this simplifies to:
\[
\log_4{3} = \frac{\log{3}}{2\log{2}} \quad \Rightarrow \quad 5\log_4{3} = 5 \times \frac{\log{3}}{2\log{2}} = \frac{5}{2} \times \frac{\log{3}}{\log{2}} = \text{(a constant value)}.
\]
Finally subtracting the values:
\[
3 - 5\log_4{3} = 0
\]
Thus, the correct answer is 0.