We are asked to find the value of the expression:
\(\sqrt{-25} + 3\sqrt{-4} + 2\sqrt{-9}\)
We can simplify each square root term by recognizing that the square root of a negative number involves the imaginary unit \(i\), where \(i = \sqrt{-1} \)
1. \(\sqrt{-25} = \sqrt{25} \times \sqrt{-1} = 5i\)
2. \(3\sqrt{-4} = 3 \times \sqrt{4} \times \sqrt{-1} = 3 \times 2 \times i = 6i\)
3. \(2\sqrt{-9} = 2 \times \sqrt{9} \times \sqrt{-1} = 2 \times 3 \times i = 6i\)
Now, combine all the terms:
\(5i + 6i + 6i = 17i\)
The answer is \( 17i \).
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to