Let $(a, b) \subset(0,2 \pi)$ be the largest interval for which $\sin ^{-1}(\sin \theta)-\cos ^{-1}(\sin \theta)>, \theta \in(0,2 \pi)$, holds If $\alpha x^2+\beta x+\sin ^{-1}\left(x^2-6 x+10\right)+\cos ^{-1}\left(x^2-6 x+10\right)=0$ and $\alpha-\beta=b-a$, then $\alpha$ is equal to :
A beam of light of wavelength \(\lambda\) falls on a metal having work function \(\phi\) placed in a magnetic field \(B\). The most energetic electrons, perpendicular to the field, are bent in circular arcs of radius \(R\). If the experiment is performed for different values of \(\lambda\), then the \(B^2 \, \text{vs} \, \frac{1}{\lambda}\) graph will look like (keeping all other quantities constant).
The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:
Tan−1x + Tan−1y = π + tan−1 (x+y/ 1-xy), if xy > 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = -π + tan−1 (x+y/ 1-xy), if xy > 1
= x, if x∈[−π/2, π/2]
= π−x, if x∈[π/2, 3π/2]
=−2π+x, if x∈[3π/2, 5π/2] And so on.
= −x, ∈[−π,0]
= x, ∈[0,π]
= 2π−x, ∈[π,2π]
=−2π+x, ∈[2π,3π]
= x, (−π/2, π/2)
= x−π, (π/2, 3π/2)
= x−2π, (3π/2, 5π/2)