The elementary properties of inverse trigonometric function s will help to solve problems. Here are a few important properties related to inverse trigonometric functions:
Property Set 1: Sin−1 (x) = cosec−1 (1/x), x∈ [−1,1]−{0} Cos−1 (x) = sec−1 (1/x), x ∈ [−1,1]−{0} Tan−1 (x) = cot−1 (1/x), if x > 0 (or) cot−1 (1/x) −π, if x < 0 Cot−1 (x) = tan−1 (1/x), if x > 0 (or) tan−1 (1/x) + π, if x < 0 Property Set 2: Sin−1 (−x) = −Sin−1 (x) Tan−1 (−x) = −Tan−1 (x) Cos−1 (−x) = π − Cos−1 (x) Cosec−1 (−x) = − Cosec−1 (x) Sec−1 (−x) = π − Sec−1 (x) Cot−1 (−x) = π − Cot−1 (x) Property Set 3: Sin−1 (1/x) = cosec−1 x, x≥1 or x≤−1 Cos−1 (1/x) = sec−1 x, x≥1 or x≤−1 Tan−1 (1/x) = −π + cot−1 (x) Property Set 4: Sin−1 (cos θ) = π/2 − θ, if θ∈[0,π] Cos−1 (sin θ) = π/2 − θ, if θ∈[−π/2, π/2] Tan−1 (cot θ) = π/2 − θ, θ∈[0,π] Cot−1 (tan θ) = π/2 − θ, θ∈[−π/2, π/2] Sec−1 (cosec θ) = π/2 − θ, θ∈[−π/2, 0]∪[0, π/2] Cosec−1 (sec θ) = π/2 − θ, θ∈[0,π]−{π/2} Sin−1 (x) = cos−1 [√(1−x2)], 0≤x≤1 = −cos−1 [√(1−x2)], −1≤x<0 Property Set 5: Sin−1 x + Cos−1 x = π/2 Tan−1 x + Cot−1 (x) = π/2 Sec−1 x + Cosec−1 x = π/2 Property Set 6: Tan−1 x + Tan−1 y = π + tan−1 (x+y/ 1-xy), if xy > 1
Tan−1 x + Tan−1 y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1 x + Tan−1 y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1 x + Tan−1 y = -π + tan−1 (x+y/ 1-xy), if xy > 1
Property Set 7: sin−1 (x) + sin−1 (y) = sin−1 [x√(1−y2)+ y√(1−x2)] cos−1 x + cos−1 y = cos−1 [xy−√(1−x2)√(1−y2)] Property Set 8: sin−1 (sin x) = −π−π, if x∈[−3π/2, −π/2] = x, if x∈[−π/2, π/2]
= π−x, if x∈[π/2, 3π/2]
=−2π+x, if x∈[3π/2, 5π/2] And so on.
cos−1 (cos x) = 2π+x, if x∈[−2π,−π] = −x, ∈[−π,0]
= x, ∈[0,π]
= 2π−x, ∈[π,2π]
=−2π+x, ∈[2π,3π]
tan−1 (tan x) = π+x, x∈(−3π/2, −π/2) = x, (−π/2, π/2)
= x−π, (π/2, 3π/2)
= x−2π, (3π/2, 5π/2)
Property Set 9: