Question:

Evaluate: \[ \sec \left( \cos^{-1} \left( \frac{2024}{2025} \right) \right) \]

Show Hint

To evaluate secant functions, use the identity \( \sec \theta = \frac{1}{\cos \theta} \) and use the given values for \( \cos \theta \) to compute the result.
Updated On: Apr 28, 2025
  • \( 2025 \)
  • \( 1 \)
  • \( \sqrt{2} \)
  • \( \frac{2025}{2024} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We start by noting that \( \cos^{-1} \left( \frac{2024}{2025} \right) \) gives an angle \( \theta \) such that: \[ \cos \theta = \frac{2024}{2025} \] Using the identity \( \sec \theta = \frac{1}{\cos \theta} \), we get: \[ \sec \theta = \frac{1}{\frac{2024}{2025}} = \frac{2025}{2024} \] Thus, the value of the expression is \( 2025 \).
Was this answer helpful?
0
0