Question:

The value of π6π2cotxsinxdx\displaystyle\int^{\frac{\pi}{2}}_{\frac{\pi}{6}}\frac{\cot x}{\sin x}dx  is equal to

Updated On: Apr 4, 2025
  • 12\frac{-1}{2}
  • \(\frac{\1}{2}\)
  • 32\frac{-3}{2}
  • 32\frac{3}{2}
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is

Solution and Explanation

We are asked to evaluate the integral I=π6π2cotxsinxdx. I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cot x}{\sin x} \, dx. First, express the integrand in a simpler form: cotxsinx=cosxsin2x. \frac{\cot x}{\sin x} = \frac{\cos x}{\sin^2 x}. Now, the integral becomes: I=π6π2cosxsin2xdx. I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin^2 x} \, dx. Next, let’s make the substitution u=sinx u = \sin x , so that du=cosxdx du = \cos x \, dx . The limits of integration change accordingly: when x=π6 x = \frac{\pi}{6} , u=sinπ6=12 u = \sin \frac{\pi}{6} = \frac{1}{2} ; and when x=π2 x = \frac{\pi}{2} , u=sinπ2=1 u = \sin \frac{\pi}{2} = 1 . The integral becomes: I=121duu2. I = \int_{\frac{1}{2}}^{1} \frac{du}{u^2}. Now, integrate 1u2 \frac{1}{u^2} : I=[1u]121=11+112=1+2=1. I = \left[ -\frac{1}{u} \right]_{\frac{1}{2}}^{1} = -\frac{1}{1} + \frac{1}{\frac{1}{2}} = -1 + 2 = 1.

The correct option is (E) : 11

Was this answer helpful?
0
0

Top Questions on Integration

View More Questions

Questions Asked in KEAM exam

View More Questions