We need to find the value of \(\int_{-\pi/2}^{\pi/2} \frac{\cos x}{1 + e^x} \, dx\).
Let \(I = \int_{-\pi/2}^{\pi/2} \frac{\cos x}{1 + e^x} \, dx\).
We use the property \(\int_a^b f(x) dx = \int_a^b f(a+b-x) dx\).
So, \(I = \int_{-\pi/2}^{\pi/2} \frac{\cos (-\pi/2 + \pi/2 - x)}{1 + e^{-\pi/2 + \pi/2 - x}} \, dx = \int_{-\pi/2}^{\pi/2} \frac{\cos (-x)}{1 + e^{-x}} \, dx\).
Since \(\cos(-x) = \cos x\), we have: \(I = \int_{-\pi/2}^{\pi/2} \frac{\cos x}{1 + e^{-x}} \, dx = \int_{-\pi/2}^{\pi/2} \frac{\cos x}{\frac{e^x+1}{e^x}} \, dx = \int_{-\pi/2}^{\pi/2} \frac{e^x \cos x}{1 + e^x} \, dx\).
Now we have two expressions for I:
\(I = \int_{-\pi/2}^{\pi/2} \frac{\cos x}{1 + e^x} \, dx\) and \(I = \int_{-\pi/2}^{\pi/2} \frac{e^x \cos x}{1 + e^x} \, dx\).
Adding these two expressions for I, we get:
\(2I = \int_{-\pi/2}^{\pi/2} \frac{\cos x}{1 + e^x} + \frac{e^x \cos x}{1 + e^x} \, dx = \int_{-\pi/2}^{\pi/2} \frac{\cos x + e^x \cos x}{1 + e^x} \, dx = \int_{-\pi/2}^{\pi/2} \frac{(1+e^x) \cos x}{1 + e^x} \, dx\)
\(2I = \int_{-\pi/2}^{\pi/2} \cos x \, dx\)
\(2I = [\sin x]_{-\pi/2}^{\pi/2} = \sin(\pi/2) - \sin(-\pi/2) = 1 - (-1) = 2\)
\(I = \frac{2}{2} = 1\)
Therefore, the correct option is (C) 1.