We need to find the value of \(\int \frac{1+x^4}{1+x^6} dx\).
We can rewrite the integrand as:
\(\int \frac{1+x^4}{1+x^6} dx = \int \frac{1+x^4}{(1+x^2)(1-x^2+x^4)} dx\)
\(\int \frac{1+x^4}{(1+x^2)(1-x^2+x^4)} dx= \int \frac{1+x^4}{1+x^6} dx\)
Now, we try to write the numerator in terms of \(1-x^2+x^4\) and \(1+x^2\) to simplify the integral:
We have \(1+x^4= (1-x^2+x^4) +x^2\). Hence \(\int \frac{1+x^4}{1+x^6} dx = \int \frac{(1-x^2+x^4)+ x^2}{(1+x^2)(1-x^2+x^4)} dx\).
Splitting the integral into two terms, \(\int \frac{1+x^4}{1+x^6} dx = \int \frac{(1-x^2+x^4)}{(1+x^2)(1-x^2+x^4)} dx + \int \frac{ x^2}{(1+x^2)(1-x^2+x^4)} dx\).
\(\int \frac{1+x^4}{1+x^6} dx = \int \frac{1}{1+x^2} dx + \int \frac{x^2}{1+x^6} dx\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \int \frac{x^2}{1+(x^3)^2} dx\).
Let \(u=x^3\) so \(du=3x^2dx\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \frac{1}{3}\int \frac{du}{1+u^2}\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \frac{1}{3}\arctan(u) + C\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \frac{1}{3}\arctan(x^3) + C\).
Therefore, the correct option is (B) \(\tan^{-1} x + \frac{1}{3} \tan^{-1} x^3 + C\).