We need to find the value of \(\int \frac{1+x^4}{1+x^6} dx\).
We can rewrite the integrand as:
\(\int \frac{1+x^4}{1+x^6} dx = \int \frac{1+x^4}{(1+x^2)(1-x^2+x^4)} dx\)
\(\int \frac{1+x^4}{(1+x^2)(1-x^2+x^4)} dx= \int \frac{1+x^4}{1+x^6} dx\)
Now, we try to write the numerator in terms of \(1-x^2+x^4\) and \(1+x^2\) to simplify the integral:
We have \(1+x^4= (1-x^2+x^4) +x^2\). Hence \(\int \frac{1+x^4}{1+x^6} dx = \int \frac{(1-x^2+x^4)+ x^2}{(1+x^2)(1-x^2+x^4)} dx\).
Splitting the integral into two terms, \(\int \frac{1+x^4}{1+x^6} dx = \int \frac{(1-x^2+x^4)}{(1+x^2)(1-x^2+x^4)} dx + \int \frac{ x^2}{(1+x^2)(1-x^2+x^4)} dx\).
\(\int \frac{1+x^4}{1+x^6} dx = \int \frac{1}{1+x^2} dx + \int \frac{x^2}{1+x^6} dx\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \int \frac{x^2}{1+(x^3)^2} dx\).
Let \(u=x^3\) so \(du=3x^2dx\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \frac{1}{3}\int \frac{du}{1+u^2}\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \frac{1}{3}\arctan(u) + C\).
\(\int \frac{1+x^4}{1+x^6} dx = \arctan(x)+ \frac{1}{3}\arctan(x^3) + C\).
Therefore, the correct option is (B) \(\tan^{-1} x + \frac{1}{3} \tan^{-1} x^3 + C\).
We want to find $ \int \frac{1+x^4}{1+x^6} dx $.
Notice that $ 1+x^6 = (1+x^2)(1-x^2+x^4) $. Let's rewrite the fraction as:
$$ \frac{1+x^4}{1+x^6} = \frac{1+x^4}{(1+x^2)(1-x^2+x^4)} = \frac{1+x^4}{1+x^2} \cdot \frac{1}{1-x^2+x^4}. $$
Observe that $ 1+x^4 = (1-x^2+x^4) + x^2 $.
Thus:
$$ \frac{1+x^4}{1+x^6} = \frac{1-x^2+x^4+x^2}{(1+x^2)(1-x^2+x^4)} = \frac{1-x^2+x^4}{(1+x^2)(1-x^2+x^4)} + \frac{x^2}{(1+x^2)(1-x^2+x^4)}. $$
Simplify further:
$$ \frac{1+x^4}{1+x^6} = \frac{1}{1+x^2} + \frac{x^2}{(1+x^2)(1-x^2+x^4)}. $$
Now, let us consider an alternative approach. Rewrite the integrand:
$$ \frac{1+x^4}{1+x^6} = \frac{1+x^4}{(1+x^2)(1-x^2+x^4)} = \frac{1}{1+x^2} - \frac{x^2}{1+x^6}. $$
Integrating term by term:
$$ \int \frac{1+x^4}{1+x^6} dx = \int \frac{1}{1+x^2} dx - \int \frac{x^2}{1+x^6} dx. $$
The first term integrates as:
$$ \int \frac{1}{1+x^2} dx = \tan^{-1} x. $$
For the second term, substitute $ u = x^3 $, so $ du = 3x^2 dx $ and $ x^2 dx = \frac{1}{3} du $. Thus:
$$ \int \frac{x^2}{1+x^6} dx = \frac{1}{3} \int \frac{1}{1+u^2} du = \frac{1}{3} \tan^{-1} u = \frac{1}{3} \tan^{-1} x^3. $$
Combining these results:
$$ \int \frac{1+x^4}{1+x^6} dx = \tan^{-1} x + \frac{1}{3} \tan^{-1} x^3 + C. $$
The graph between variation of resistance of a wire as a function of its diameter keeping other parameters like length and temperature constant is
While determining the coefficient of viscosity of the given liquid, a spherical steel ball sinks by a distance \( x = 0.8 \, \text{m} \). The radius of the ball is \( 2.5 \times 10^{-3} \, \text{m} \). The time taken by the ball to sink in three trials are tabulated as shown: