Let:
$$ I = \int_0^1 \frac{\log(1+x)}{1+x^2} dx. $$
Let $ x = \tan \theta $.
Then $ dx = \sec^2 \theta d\theta $ and $ 1+x^2 = 1+\tan^2 \theta = \sec^2 \theta $. When $ x=0 $, $ \theta = 0 $. When $ x=1 $, $ \theta = \frac{\pi}{4} $.
Substitute into the integral:
$$ I = \int_0^{\pi/4} \frac{\log(1+\tan \theta)}{\sec^2 \theta} \sec^2 \theta d\theta = \int_0^{\pi/4} \log(1+\tan \theta) d\theta. $$
We use the property $ \int_a^b f(x) dx = \int_a^b f(a+b-x) dx $.
Applying this to $ I $:
$$ I = \int_0^{\pi/4} \log(1+\tan (\frac{\pi}{4} - \theta)) d\theta. $$
Using the tangent subtraction formula $ \tan(\frac{\pi}{4} - \theta) = \frac{\tan \frac{\pi}{4} - \tan \theta}{1 + \tan \frac{\pi}{4} \tan \theta} = \frac{1 - \tan \theta}{1 + \tan \theta} $, we get:
$$ I = \int_0^{\pi/4} \log\left(1 + \frac{1 - \tan \theta}{1 + \tan \theta}\right) d\theta. $$
Simplify the argument of the logarithm:
$$ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} = \frac{(1 + \tan \theta) + (1 - \tan \theta)}{1 + \tan \theta} = \frac{2}{1 + \tan \theta}. $$
Thus:
$$ I = \int_0^{\pi/4} \log\left(\frac{2}{1 + \tan \theta}\right) d\theta = \int_0^{\pi/4} \left(\log 2 - \log(1+\tan \theta)\right) d\theta. $$
Split the integral:
$$ I = \int_0^{\pi/4} \log 2 d\theta - \int_0^{\pi/4} \log(1+\tan \theta) d\theta. $$
The first term evaluates as:
$$ \int_0^{\pi/4} \log 2 d\theta = \log 2 \cdot \theta \Big|_0^{\pi/4} = \log 2 \cdot \left(\frac{\pi}{4} - 0\right) = \frac{\pi}{4} \log 2. $$
The second term is just $ I $, so:
$$ I = \frac{\pi}{4} \log 2 - I. $$
Rearrange to solve for $ I $:
$$ 2I = \frac{\pi}{4} \log 2 \implies I = \frac{\pi}{8} \log 2. $$
We need to find the value of \(\int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx\).
Let \(x = \tan \theta\). Then \(dx = \sec^2 \theta \, d\theta\).
When \(x = 0\), \(\tan \theta = 0\), so \(\theta = 0\).
When \(x = 1\), \(\tan \theta = 1\), so \(\theta = \frac{\pi}{4}\).
So the integral becomes:
\(\int_{0}^{\pi/4} \frac{\log(1+\tan \theta)}{1+\tan^2 \theta} \sec^2 \theta \, d\theta\)
Since \(1 + \tan^2 \theta = \sec^2 \theta\), we have:
\(\int_{0}^{\pi/4} \frac{\log(1+\tan \theta)}{\sec^2 \theta} \sec^2 \theta \, d\theta = \int_{0}^{\pi/4} \log(1+\tan \theta) \, d\theta\)
Let \(I = \int_{0}^{\pi/4} \log(1+\tan \theta) \, d\theta\).
Using the property \(\int_a^b f(x) dx = \int_a^b f(a+b-x) dx\), we have:
\(I = \int_{0}^{\pi/4} \log(1+\tan (\frac{\pi}{4} - \theta)) \, d\theta\)
Using the formula for \(\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}\), we get:
\(I = \int_{0}^{\pi/4} \log(1+\frac{\tan(\frac{\pi}{4}) - \tan \theta}{1 + \tan(\frac{\pi}{4}) \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log(1+\frac{1 - \tan \theta}{1 + \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log(\frac{1 + \tan \theta + 1 - \tan \theta}{1 + \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log(\frac{2}{1 + \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log 2 - \log(1 + \tan \theta) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log 2 \, d\theta - \int_{0}^{\pi/4} \log(1 + \tan \theta) \, d\theta\)
\(I = \log 2 [\theta]_{0}^{\pi/4} - I\)
\(I = \log 2 \cdot \frac{\pi}{4} - I\)
\(2I = \frac{\pi}{4} \log 2\)
\(I = \frac{\pi}{8} \log 2\)
Therefore, the correct option is (D) \(\frac{\pi}{8} \log 2\).
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: