Let:
$$ I = \int_0^1 \frac{\log(1+x)}{1+x^2} dx. $$
Let $ x = \tan \theta $.
Then $ dx = \sec^2 \theta d\theta $ and $ 1+x^2 = 1+\tan^2 \theta = \sec^2 \theta $. When $ x=0 $, $ \theta = 0 $. When $ x=1 $, $ \theta = \frac{\pi}{4} $.
Substitute into the integral:
$$ I = \int_0^{\pi/4} \frac{\log(1+\tan \theta)}{\sec^2 \theta} \sec^2 \theta d\theta = \int_0^{\pi/4} \log(1+\tan \theta) d\theta. $$
We use the property $ \int_a^b f(x) dx = \int_a^b f(a+b-x) dx $.
Applying this to $ I $:
$$ I = \int_0^{\pi/4} \log(1+\tan (\frac{\pi}{4} - \theta)) d\theta. $$
Using the tangent subtraction formula $ \tan(\frac{\pi}{4} - \theta) = \frac{\tan \frac{\pi}{4} - \tan \theta}{1 + \tan \frac{\pi}{4} \tan \theta} = \frac{1 - \tan \theta}{1 + \tan \theta} $, we get:
$$ I = \int_0^{\pi/4} \log\left(1 + \frac{1 - \tan \theta}{1 + \tan \theta}\right) d\theta. $$
Simplify the argument of the logarithm:
$$ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} = \frac{(1 + \tan \theta) + (1 - \tan \theta)}{1 + \tan \theta} = \frac{2}{1 + \tan \theta}. $$
Thus:
$$ I = \int_0^{\pi/4} \log\left(\frac{2}{1 + \tan \theta}\right) d\theta = \int_0^{\pi/4} \left(\log 2 - \log(1+\tan \theta)\right) d\theta. $$
Split the integral:
$$ I = \int_0^{\pi/4} \log 2 d\theta - \int_0^{\pi/4} \log(1+\tan \theta) d\theta. $$
The first term evaluates as:
$$ \int_0^{\pi/4} \log 2 d\theta = \log 2 \cdot \theta \Big|_0^{\pi/4} = \log 2 \cdot \left(\frac{\pi}{4} - 0\right) = \frac{\pi}{4} \log 2. $$
The second term is just $ I $, so:
$$ I = \frac{\pi}{4} \log 2 - I. $$
Rearrange to solve for $ I $:
$$ 2I = \frac{\pi}{4} \log 2 \implies I = \frac{\pi}{8} \log 2. $$
We need to find the value of \(\int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx\).
Let \(x = \tan \theta\). Then \(dx = \sec^2 \theta \, d\theta\).
When \(x = 0\), \(\tan \theta = 0\), so \(\theta = 0\).
When \(x = 1\), \(\tan \theta = 1\), so \(\theta = \frac{\pi}{4}\).
So the integral becomes:
\(\int_{0}^{\pi/4} \frac{\log(1+\tan \theta)}{1+\tan^2 \theta} \sec^2 \theta \, d\theta\)
Since \(1 + \tan^2 \theta = \sec^2 \theta\), we have:
\(\int_{0}^{\pi/4} \frac{\log(1+\tan \theta)}{\sec^2 \theta} \sec^2 \theta \, d\theta = \int_{0}^{\pi/4} \log(1+\tan \theta) \, d\theta\)
Let \(I = \int_{0}^{\pi/4} \log(1+\tan \theta) \, d\theta\).
Using the property \(\int_a^b f(x) dx = \int_a^b f(a+b-x) dx\), we have:
\(I = \int_{0}^{\pi/4} \log(1+\tan (\frac{\pi}{4} - \theta)) \, d\theta\)
Using the formula for \(\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}\), we get:
\(I = \int_{0}^{\pi/4} \log(1+\frac{\tan(\frac{\pi}{4}) - \tan \theta}{1 + \tan(\frac{\pi}{4}) \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log(1+\frac{1 - \tan \theta}{1 + \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log(\frac{1 + \tan \theta + 1 - \tan \theta}{1 + \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log(\frac{2}{1 + \tan \theta}) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log 2 - \log(1 + \tan \theta) \, d\theta\)
\(I = \int_{0}^{\pi/4} \log 2 \, d\theta - \int_{0}^{\pi/4} \log(1 + \tan \theta) \, d\theta\)
\(I = \log 2 [\theta]_{0}^{\pi/4} - I\)
\(I = \log 2 \cdot \frac{\pi}{4} - I\)
\(2I = \frac{\pi}{4} \log 2\)
\(I = \frac{\pi}{8} \log 2\)
Therefore, the correct option is (D) \(\frac{\pi}{8} \log 2\).