We are given the integral \( \int_{0}^{\sqrt{3}} \frac{6}{9 + x^2} \, dx \) and are asked to find the value of the integral.
We can solve this by recognizing the form of the integral. The standard integral for \( \int \frac{dx}{a^2 + x^2} \) is \( \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) \).
Here, we have \( \frac{6}{9 + x^2} \), which is of the form \( \frac{6}{3^2 + x^2} \). So, we apply the formula with \( a = 3 \).
The integral becomes:
\( \int_{0}^{\sqrt{3}} \frac{6}{9 + x^2} \, dx = \int_{0}^{\sqrt{3}} \frac{2}{3} \cdot \frac{1}{1 + \left( \frac{x}{3} \right)^2} \, dx \).
This simplifies to:
\( \frac{2}{3} \int_{0}^{\sqrt{3}} \frac{dx}{1 + \left( \frac{x}{3} \right)^2} \).
Now, applying the standard formula \( \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) \) with \( a = 3 \), we get:
\( \frac{2}{3} \left[ \tan^{-1} \left( \frac{x}{3} \right) \right]_{0}^{\sqrt{3}} \).
Evaluating the limits:
\( \frac{2}{3} \left( \tan^{-1} \left( \frac{\sqrt{3}}{3} \right) - \tan^{-1}(0) \right) \).
Since \( \tan^{-1} \left( \frac{\sqrt{3}}{3} \right) = \frac{\pi}{6} \), we get:
\( \frac{2}{3} \cdot \frac{\pi}{6} = \frac{\pi}{9} \).
The correct answer is \( \frac{\pi}{6} \).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to: