\(2I\)
\(6I\)
\(5I\)
\(7I\)
\(IP = I+9I+2\sqrt {I\times9I} \ cos \frac {\pi}{2}= 10I\)
\(IP = I+9I+2\sqrt {I\times9I} \ cos \pi= 14I\)
Then, the difference between the resultant intensities
\(I_P - I_Q = 6I\)
Hence, the correct option is (B): \(6I\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: