Step 1: Express \( \theta \) in terms of the height of the camera and \( x \).
Using the right triangle formed by the height of the pole and the distance of the car from the base, we have:
\[
\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{5}{x}
\]
Thus,
\[
\theta = \tan^{-1}\left(\frac{5}{x}\right)
\]
Step 2: Find \( \frac{d\theta}{dx} \).
Differentiating \( \theta = \tan^{-1}\left(\frac{5}{x}\right) \) with respect to \( x \):
\[
\frac{d\theta}{dx} = \frac{1}{1 + \left(\frac{5}{x}\right)^2} \cdot \left(-\frac{5}{x^2}\right)
\]
\[
\frac{d\theta}{dx} = \frac{-5}{x^2 + 25}
\]
Step 3: Find \( \frac{d\theta}{dt} \) at \( x = 50 \).
Given \( \frac{dx}{dt} = 20 \, \text{m/s} \), using the chain rule:
\[
\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt}
\]
\[
\frac{d\theta}{dt} = \frac{-5}{50^2 + 25} \cdot 20
\]
\[
\frac{d\theta}{dt} = \frac{-5}{2525} \cdot 20 = \frac{-20}{505} = \frac{-4}{101} \, \text{rad/s}
\]
Step 4: Find the speed of another car if \( \frac{d\theta}{dt} = \frac{3}{101} \).
Using the given value of \( \frac{d\theta}{dt} \):
\[
\frac{3}{101} = \frac{-5}{2525} \cdot v
\]
\[
v = \frac{3}{101} \cdot 505 = 15 \, \text{m/s}
\]
Final Answers:
\begin{enumerate}
\( \theta = \tan^{-1}\left(\frac{5}{x}\right) \)
\( \frac{d\theta}{dx} = \frac{-5}{x^2 + 25} \)
\begin{enumerate}
\( \frac{d\theta}{dt} = \frac{-4}{101} \) rad/s
The speed of the car is \( 15 \) m/s
\end{enumerate}
\end{enumerate}