Given system parameters:
The equivalent spring constant for the system is calculated as:
\[ k_{\text{eq}} = \frac{2k \cdot k}{2k + k} + k = \frac{5k}{3} \]The angular frequency of oscillation (\( \omega \)) is given by:
\[ \omega = \sqrt{\frac{k_{\text{eq}}}{m}} \]Substituting the value of \( k_{\text{eq}} \):
\[ \omega = \sqrt{\frac{\frac{5k}{3}}{m}} = \sqrt{\frac{5k}{3m}} \]The period of oscillation (\( \tau \)) is:
\[ \tau = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{\frac{5k}{3}}} = 2\pi \sqrt{\frac{3m}{5k}} \]Simplifying:
\[ \tau = \pi \sqrt{\frac{12m}{5k}} \]Thus, comparing with the given expression:
\[ T = \pi \sqrt{\frac{\alpha M}{5K}} \]we find:
\[ \alpha = 12 \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: