Step 1: Using the time period formula for a satellite: \[ T^2 = \frac{4\pi^2 r^3}{GM} \] Step 2: Substituting \( r = 2R \): \[ T^2 = \frac{4\pi^2 (2R)^3}{GM} = \frac{4 \times 8 \times \pi^2 R^3}{GM} = \frac{4 \times 8 \times g \times R^3}{GR^2} \] Step 3: Simplifying the expression: At the surface of the Earth, we have \( g = \frac{GM}{R^2} \).
So, substituting \( GM = gR^2 \) and \( \pi^2 = g \), we get: \[ T^2 = 32R \quad \Rightarrow \quad T = \sqrt{32R} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: