Step 1: Identify the given data.
Radius \( r = 5 \) cm, \( OQ = 12 \) cm. We have to find \( PQ \).
Step 2: Use the property of tangent and radius.
The radius drawn to the tangent at the point of contact is perpendicular to the tangent. Thus, \( \triangle OPQ \) is a right-angled triangle at \( P \).
Step 3: Apply the Pythagoras theorem.
\[ OQ^2 = OP^2 + PQ^2 \] \[ PQ^2 = OQ^2 - OP^2 = 12^2 - 5^2 = 144 - 25 = 119 \] \[ PQ = \sqrt{119} \text{ cm} \] Step 4: Conclusion.
Hence, the length of the tangent \( PQ = \sqrt{119} \) cm.